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Synchronizing hyperchaos with a single variable

A. Tamaševičius and A. Čenys
Semiconductor Physics Institute, LT 2600 Vilnius, Lithuania

~Received 1 July 1996!

Chaos synchronism is investigated in hyperchaotic systems. Regarding the possible applications in secure
communications, the synchronization of the hyperchaotic systems viaonly one dynamical variableis demon-
strated. As an illustration three examples including two hyperchaotic electronic circuits and the Ro¨ssler hy-
perchaotic equations are considered.@S1063-651X~97!12501-6#

PACS number~s!: 05.45.1b, 89.70.1c
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The most intriguing feature of the chaotic synchronizat
is its potential possibility to be applied in secure commu
cations@1–4#. However, it has been recently realized@5# that
masking signals by means of comparatively simple ch
with only one positive Lyapunov exponent does not ens
high level of security. In some cases decoding can be
formed using common signal processing methods. T
straightforward way to overcome this shortcoming is to e
ploy more complex hyperchaotic signals. It was, howev
commonly believed that synchronization of the hyperchao
systems can not be achieved by a single variable coup
@6#. One could think that for hyperchaotic systems it is ne
essary to transmit as much variables as there are pos
Lyapunov exponents. Very recently Penget al.demonstrated
@7#, that this assumption is incorrect and hyperchaotic s
tems can be synchronized with asingle transmitted signal.
Their idea is to transmit a scalar signal constructed in
form of the linear combination of the original variable
Given a hyperchaotic system

dxW /dt5FW ~xW !, ~1!

where xW P Rm is an m-dimensional state vecto
xW5$x1 ,x2 , . . . ,xm%, one can construct a complex sign
u(t)5KW xW5K1x1(t)1K2x2(t)1••• 1Kmxm(t). The trans-
mitted signalu(t) is then applied to all the variables of th
response system with another weight vectorBW

dxW r /dt5FW ~xW r !1BW ~u2KW xW r !. ~2!

By the proper adjustment of both, vectorKW and vectorBW , the
synchronization can be achieved with onlyone scalar trans-
mitted signal u(t).

From the practical point of view, however, the abo
method can lead to some inconvenience. To implement
method one needs to have direct access to all or at least
variables in the transmitter as well as in the receiver syst
This may appear to be rather complicated in the real si
tions. In the present paper we argue that the problem ca
solved by the proper selection of the original hyperchao
system. We give two examples of hyperchaotic electro
circuits, which can be immediately synchronized with
single variable. For the first hyperchaotic circuit suggeste
by Matsumoto, Chua, and Kobayashi@8# synchronization is
achieved by the proper choice of the single transmitted v
551063-651X/97/55~1!/297~3!/$10.00
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able. This situation often appears also for the usual cha
systems with one positive Lyapunov exponent, when s
chronization is sensitive to the choice of the synchroniz
variable. The second hyperchaotic circuit@9# can be synchro-
nized using any variable.

In addition, we suggest a modification to the method
Penget al.’s. The modified technique enables one to emp
the original single variable approach even in the case w
the original hyperchaotic system, like the Ro¨ssler equations,
cannot be synchronized immediately with a single variab

The basic idea is to transform the variables of the origi
system. Considering for simplicity only linear transformatio

jW5CxW , ~3!

whereC is an arbitrarily chosen matrix, we construct a
‘‘improved’’ system

djW /dt5FW ~jW !. ~4!

All the essential features, like the Lyapunov exponents,
mensions, etc., of the new system remain unchanged ex
for the synchronization properties. With the proper choice
the matrixC one can expect to achieve the synchronizat
in the new hyperchaotic system with the single varia
transmitted and applied to only one variable of the respo
system. As compared with the method of Penget al. this
corresponds to only one nonzero componentBi in the vector
BW . There is no general algorithm for choosing the mat
C, but some hints can be suggested. One could try to c
struct the new vectorjW in such a way that only one equatio
would have an ‘‘unstable’’~positive! diagonal element.
There is hope to synchronize hyperchaotic systems via
single ‘‘unstable’’ variable. We demonstrate the perfor
mance of this approach for the hyperchaotic Ro¨ssler system.

To make sure that the synchronization is robust in a s
cific hyperchaotic system we estimate the conditio
Lyapunov exponents introduced by Pecora and Carroll@1#.
The largest conditional Lyapunov exponent plotted aga
the scalar coefficientBi provides the synchronization thresh
old.

Example 1. Let us consider the electronic circuit of Ma
sumoto, Chua, and Kobayashiet al. @8# characterized by two
positive Lyapunov exponents,l150.24 andl250.06. The
dynamics of the circuit is described by@8#
297 © 1997 The American Physical Society
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C1dU1 /dt5g~U22U1!2 i 1 ,

C2dU2 /dt52g~U22U1!2 i 2 ,

L1di1 /dt5U11Ri1 ,

L2di2 /dt5U2 . ~5!

HereU1 , U2 , i 1, and i 2 are the voltages~currents! across
~through! the corresponding elements of the hyperchao
circuit. TheC1 , C2 , L1, andL2 are the nominal paramete
values of the associated elements. TheR is the absolute
value of the first negative~linear! resistance. The following
parameter values have been used in@8#: 1/C152, 1/C2520,
1/L151, 1/L251.5, R51. The g(U22U1) represents the
current-voltage characteristic of the second negative~nonlin-
ear! resistor and is approximated by three segment piecew
linear function

g~U22U1!5m0~U22U1!10.5~m12m0!

3~ uU22U111u2uU22U121u!, ~6!

with m053 andm1520.2.
This electronic circuit can be synchronized straightf

wardly with asingle variablewithout any modifications by
means of the control termB3( i 12 i 1r). The synchronization
capability is evident from Fig. 1. Thetwo positive Lyapunov
exponents can be made negative with asingledriving vari-
able i 1(t) providedB3.0.56. We note, however, that syn
chronization can be achieved only via the variablei 1, but not
via U1, U2, or i 2.

Example 2. One more example can be provided by a ve
simple hyperchaotic oscillator described in@9#. The oscilla-
tor contains a combined parallel-seriesLC circuit, a negative
resistance, a diode as a nonlinear device, and a single op
Implementation of the circuit and other details of an isola
oscillator are given in@9#. There are two positive Lyapuno
exponents characterizing dynamical behavior of the syst
for example,l150.11 andl250.06 for a certain combina
tion of the parameter values. The dynamics of the oscilla
is described by the set of equations

dx/dt5ax2y2z, ~7!

dy/dt5x2by,

mdz/dt5x2v2cz,

FIG. 1. Two largest conditional Lyapunov exponentsl1 and
l2 as the functions of the coupling parameterB3 for the Matsu-
moto, Chur, and Kobayashi@8# hyperchaotic circuit.
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edv/dt5z2d~v21!H~v21!.

Here the H(u) is the Heaviside function, that is
H(u,0)50, H(u>0)51. We use the following set of pa
rameter values:a50.6, b50.05,c50.015,d510, e50.33,
m50.3, that correspond to the experimental ones. The s
chronization again can be achieved immediately w
B1(x2xr). Figure 2 demonstrates that the oscillators a
synchronized atB1.0.32. In contrast to the preceding e
ample robust synchronization can be achieved also via
other variabley, z, or v.

Example 3. Originally the hyperchaotic Ro¨ssler system is
given by @10#

dx/dt52y2z,

dy/dt5x10.25y1w,

dz/dt531xz,

dw/dt520.5z10.05w. ~8!

Pyragas has shown@6#, that to synchronize these equations
the identical ones at leasttwo variablesare needed. In the

FIG. 3. Two largest conditional Lyapunov exponentsl1 and
l2 as the functions of the coupling parameterB4 for the Rössler
system:~a! original equations;~b! modified equations.

FIG. 2. Two largest conditional Lyapunov exponentsl1 and
l2 as the functions of the coupling parameterB1 for the Tamasˇevi-
čius’ and Namajūnas, and Cˇ enys@9# hyperchaotic oscillator.
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particular example variablesy andw were used. In@7# the
synchronization of the Ro¨ssler hyperchaotic system has be
achieved transmitting a scalar signal but adding it totwo
equations, namely, the one forx and the one forz.

Introducing a new variablev5y1w we obtain a new
form of the Rössler system

dx/dt52y2z,

dy/dt5x20.75y1v,

dz/dt531xz,

dv/dt5x20.8y20.5z11.05v. ~9!

In contrast to the original system described by Eqs.~8!, the
modified system can be synchronized with asingle variable
by adding a control termB4(v2v r) to the response system
We emphasize that in@7# BW is an m-dimensional vector,
t.
meanwhile in Eqs.~9! B4 is just a scalar parameter. Th
largest conditional Lyapunov exponent~Fig. 3! becomes
negative atB4.0.62.

This synchronization technique is similar, in a sense,
the scalar transmitted signal method@7#, where the transmit-
ted signal is composed oftwo variables, u(t)5K1x(t)
1K3z(t). Then the transmitted signalu(t) is plugged
into two equations of the response system:$B1@u(t)
2K1xr(t)#, B3@u(t)2K3zr(t)#% @7#. However, in our case
the system itself is transformed in such a way that it can
synchronized with asingle variablev(t) immediately.

The synchronization time scale can be estimated from
largest Lyapunov exponent ast}ul1u21. Evidently, the
value oft for a particular system depends on the parame
B.

In summary, we have considered the synchronization p
sibility in four-dimensional hyperchaotic systems. In th
context of the application to secure communications hyp
chaos is shown to be synchronized viaonly one variable.
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