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Synchronizing hyperchaos with a single variable
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Chaos synchronism is investigated in hyperchaotic systems. Regarding the possible applications in secure
communications, the synchronization of the hyperchaotic systensmaone dynamical variables demon-
strated. As an illustration three examples including two hyperchaotic electronic circuits and shlerRuy-
perchaotic equations are considergsll063-651X97)12501-§

PACS numbds): 05.45+b, 89.70+c

The most intriguing feature of the chaotic synchronizationable. This situation often appears also for the usual chaotic
is its potential possibility to be applied in secure communi-systems with one positive Lyapunov exponent, when syn-
cations[1-4]. However, it has been recently realiZéd that  chronization is sensitive to the choice of the synchronizing
masking signals by means of comparatively simple chaosariable. The second hyperchaotic cird@} can be synchro-
with only one positive Lyapunov exponent does not ensurenized using any variable.
high level of security. In some cases decoding can be per- In addition, we suggest a modification to the method of
formed using common signal processing methods. Thé&enget al's. The modified technique enables one to employ
straightforward way to overcome this shortcoming is to em-the original single variable approach even in the case when
ploy more complex hyperchaotic signals. It was, howeverthe original hyperchaotic system, like the $3ter equations,
commonly believed that synchronization of the hyperchaoticcannot be synchronized immediately with a single variable.
systems can not be achieved by a single variable coupling The basic idea is to transform the variables of the original
[6]. One could think that for hyperchaotic systems it is nec-system. Considering for simplicity only linear transformation
essary to transmit as much variables as there are positive
Lyapunov exponents. Very recently Pegtgal. demonstrated £=Cx, 3)

[7], that this assumption is incorrect and hyperchaotic sys-
tems can be synchronized withsingle transmitted signal \yhere C is an arbitrarily chosen matrix, we construct an
Their idea is to transmit a spalar signal c.or_lstructe(_j in the‘improved” system
form of the linear combination of the original variables.
Given a hyperchaotic system dE/dt=d (). @
dxfdt=F(x), @) All the essential features, like the Lyapunov exponents, di-
- mo . . mensions, etc., of the new system remain unchanged except
\ivhere x e R" is an m-dimensional state vef:tor for the synchronization properties. With the proper choice of
x={x Xoy e Xm}, One can construct a complex signal the matrixC one can expect to achieve the synchronization
u(t)=Kx=Kxi(t) + Koxo(t) + - + K Xpy(t). The trans- in the new hyperchaotic system with the single variable
mitted signalu(t) is then applied to all the variables of the transmitted and applied to only one variable of the response

response system with another weight vedor system. As compared with the method of Peztaal. this
corresponds to only one nonzero comporignin the vector
dx, /dt=F(x,)+B(u—KXx,). 2 B. There is no general algorithm for choosing the matrix

C, but some hints can be suggested. One could try to con-

By the proper adjustment of both, vectérand vectoB, the  struct the new vectof in such a way that only one equation
synchronization can be achieved with owlge scalar trans- would have an ‘“unstable” (positive diagonal element.
mitted signal t). There is hope to synchronize hyperchaotic systems via this
From the practical point of view, however, the abovesingle “unstable” variable We demonstrate the perfor-
method can lead to some inconvenience. To implement thsance of this approach for the hyperchaotis&er system.
method one needs to have direct access to all or at least two To make sure that the synchronization is robust in a spe-
variables in the transmitter as well as in the receiver systentific hyperchaotic system we estimate the conditional
This may appear to be rather complicated in the real situakyapunov exponents introduced by Pecora and Caftgll
tions. In the present paper we argue that the problem can behe largest conditional Lyapunov exponent plotted against
solved by the proper selection of the original hyperchaotidhe scalar coefficier; provides the synchronization thresh-
system. We give two examples of hyperchaotic electroniold.
circuits, which can be immediately synchronized with a Example 1Let us consider the electronic circuit of Mat-
single variable For the first hyperchaotic circuit suggested sumoto, Chua, and Kobayaddtial. [8] characterized by two
by Matsumoto, Chua, and KobayagBi synchronization is positive Lyapunov exponents,;=0.24 and\,=0.06. The
achieved by the proper choice of the single transmitted varidynamics of the circuit is described p$]
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FIG. 1. Two largest conditional Lyapunov exponeits and FIG. 2. Two largest conditional Lyapunov exponents and
X, as the functions of the coupling parameBy for the Matsu- A2 @s the functions of the coupling paramegrfor the Tamasvi-
moto, Chur, and Kobayasf8] hyperchaotic circuit. cius’ and Namajnas, and €nys[9] hyperchaotic oscillator.
C,dU, /dt=g(U,—U;)—i,, edv/dt=z—d(v—21)H(v—1).
C,dU,/dt=—g(Upy—Uy)—i Here the H(u) is the Heaviside function, that is
20Uy at= 2~ U1)~lg,

H(u<0)=0, H(u=0)=1. We use the following set of pa-
rameter valuesa=0.6, b=0.05,c=0.015,d=10, ¢=0.33,
n=0.3, that correspond to the experimental ones. The syn-
Ldi./dt=U.,. 5 chronization ~again can be achieved |mmed|_ately with
202 2 © B.(x—X,). Figure 2 demonstrates that the oscillators are

HereU,, U,, i, andi, are the voltagegcurrent3 across synchronized aBl>0.3_2. In contrast to th_e preceding_ex-
(through the corresponding elements of the hyperchaoticamp|e ropust synchronization can be achieved also via any
circuit. TheCy, C,, L4, andL, are the nominal parameter Other variabley, z, orv. _ _
values of the associated elements. TRes the absolute  Example 3Originally the hyperchaotic Risler system is
value of the first negativéinearn resistance. The following 9IVén by[10]
parameter values have been used8h 1/C,=2, 1/C,=20,

1/L,=1, 1L,=1.5, R=1. The g(U,—U,) represents the
current-voltage characteristic of the second negdtioalin-

eal resistor and is approximated by three segment piecewise

linear function

leilldt:Ul+Ril,

dx/dt=—-y—z,
dy/dt=x+0.25/+w,

dz/dt=3+xz
9(Uz=Uy)=Me(Uz=U2)+0.5my = mo) dw/dt=—0.5z-+0.05w. ®

X(JUp—Uy+1[=|U—Uy—1)), () . .
Pyragas has show], that to synchronize these equations to

with mg=3 andm;=—0.2. the identical ones at leasivo variablesare needed. In the
This electronic circuit can be synchronized straightfor-
wardly with asingle variablewithout any modifications by
means of the control terB;(i,—i,,). The synchronization 017 i
capability is evident from Fig. 1. Thisvo positive Lyapunov Q1 0.0 Leassanassnssses
exponents can be made negative withirgle driving vari- ’E
ablei(t) providedB;>0.56. We note, however, that syn- ~< 01t .
chronization can be achieved only via the variahlebut not a
via Ul’ U2, or iz. 02 1
Example 20One more example can be provided by a very 00 02 o7  os  os 10
simple hyperchaotic oscillator described[®]. The oscilla- B,
tor contains a combined parallel-serleS circuit, a negative
resistance, a diode as a nonlinear device, and a single opamp. o freeeee ' ' ' ]
Implementation of the circuit and other details of an isolated ’
oscillator are given if9]. There are two positive Lyapunov <1 0.0 fersav Mo
exponents characterizing dynamical behavior of the system, ’E e, T
for example \;=0.11 and\,=0.06 for a certain combina- ~<.1F Tt e
tion of the parameter values. The dynamics of the oscillator b
is described by the set of equations 021 . . . T
0.0 0.2 0.4 0.6 0.8 1.0
dx/dt=ax—y—z, (7) B,
dy/dt=x—Dby, FIG. 3. Two largest conditional Lyapunov exponents and

N, as the functions of the coupling parameRy for the Rasler
pdz/ldt=x—v—cz system:(a) original equations(b) modified equations.
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particular example variableg andw were used. I{7] the
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meanwhile in Egs(9) B, is just a scalar parameter. The

synchronization of the Rasler hyperchaotic system has beenlargest conditional Lyapunov exponefiEig. 3) becomes

achieved transmitting a scalar signal but adding ittwm
equations namely, the one fox and the one foe.

Introducing a new variable =y+w we obtain a new
form of the R®sler system

dx/dt=—-y—z,
dy/dt=x—-0.75/+v,
dz/dt=3+xz,

dv/dt=x—0.8y— 0.5+ 1.05. (9)

In contrast to the original system described by E&3. the
modified system can be synchronized witBiagle variable
by adding a control termB,(v —v,) to the response system.

We emphasize that if7] B is an m-dimensional vector,

negative aB,>0.62.

This synchronization technique is similar, in a sense, to
the scalar transmitted signal methigd, where the transmit-
ted signal is composed ofwo variables u(t)=Kx(t)
+Kjz(t). Then the transmitted signal(t) is plugged
into two equations of the response system{B;[u(t)

— Ky, (1)1, Bs[u(t)—Kszz.(t)]} [7]. However, in our case
the system itself is transformed in such a way that it can be
synchronized with &ingle variablev (t) immediately.

The synchronization time scale can be estimated from the
largest Lyapunov exponent asx|\,|~. Evidently, the
value of 7 for a particular system depends on the parameter
B.

In summary, we have considered the synchronization pos-
sibility in four-dimensional hyperchaotic systems. In the
context of the application to secure communications hyper-
chaos is shown to be synchronized wialy one variable
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